
8051 Micro-controller Lab Manual



Table of Contents

1. Addition of Two 8-bit Numbers

2. Addition of Two 16-bit Numbers

3. Subtraction of 8-bit Number

4. Subtraction of 16-bit Number

5. Multiplication of Two 8-bit Numbers

6. Division of 8-bit Number

7. 2’s Complement of 8-bit Number

8. 2’s Complement of 16-bit Number

9. Largest of N Numbers

10.Count Number of One’s and Zero’s in a Number

11.Square Number Using Lookup Table

12.Switch Status

13.Time Delay Using Timer

14.Arrange the Numbers in Ascending Order



Addition of two 8-bit numbers

Address Mnemonics Opcode Operands Comment

MOV A, #O5H 05H is
moved to A

MOV R1, #15H 15H is
moved to
R1

ADD A,R1 Add the
value of A
and R1

MOV DPTR, #9000H DPTR is
initialized
data pointer
is set
to 9000H

MOVX
@DPTR,A

Value of A
is moved
to
DPTR

JMP OOOO Stop



Addition of two 16-bit numbers

Address Mnemonics Opcode Operands Comments

MOV A, #34H 34 is moved
to A

ADD A, #62H 62 is moved
to A

MOV DPTR #9000H DPTR is
initialized
data pointer is
set to
9000H

MOVX

@DPTR,A

Value of A is
moved to
DPTR

MOV A, #12 12 is moved
to A

ADDC A, #24 Add 24 to the
value of A

INC DPTR Increment the
location of
DPTR

MOVX

@DPTR,A

Value of A is
moved to
DPTR

JMP 0000 Stop



SUBTRACTION OF 8-BIT NUMBER

Address Mnemonics Opcode Operands Comments

MOV R1, #05H 05 is moved
to R1

MOV A #15H 15 is moved
to A

CLR C Clear the
carry flag

SUBB A,R1 Subtract 15
from
05

MOV DPTR, #9000H Initialize the
data pointer is
set to
9000H

MOVX@DPTR,A Value of A is
moved to
9000H

JMP 0000 Stop



SUBTRACTION OF 16-BIT NUMBER

Address Mnemonics Opcode Operands Comments

MOV A #09H 09H is

moved to A

SUBB A #06H 06H is subtracted
from A

MOV DPTR #9000H Initialize the DPTR,
data pointer is
set to900H

MOV@DPTR,A Move the value of
A to
DPTR

MOV A #07H 07H is

moved to A

SUBB A #04H 04H is subtracted
from A

INC DPTR DPTR is

incremented

MOVX @ DPTR,A Move the value of
A to
DPTR

JMP 0000 Stop



Multiplication of two 8-bit numbers

Address Mnemonics Opcode Operands Comments

MOV A, #02H Move 02 to
accumulator

MOV B, #04H Move 04 to
Reg B

MUL AB Multiply the
value
of A and B

MOV DPTR, #9000H Initialize the
DPTR and
DPTR is set to
9000H

MOV X@
DPTR,A

Value of A is
moved
to 9000H

JMP 00 00 00 Stop



Division of 8-bit number

Address Mnemonics Opcode Operands Comments

MOV A, #65H 65 is moved
to A

MOV B, #05H 05 is moved
to A

DIV AB Divide A by B

MOV DPTR, 9000H DPTR is
initialized
data pointer
is set to
9000H

MOVX

@DPTR,A

Value of A is
moved to
DPTR

INC DPTR Value of
DPTR is
incremented

MOV A,B Value of A is
moved to B

MPVX
@DPTR,A

DPTR is
initialized
data pointer
is set to
9000H

JMP 0000 Stop



2’s complement of 8-bit number

Address Mnemonics Opcode Operands Comments

MOV A, #05H 05H is moved
to A

CPL A, A is
complimented

ADDA #01H 01 is added to

A

MOV DPTR, #9000H Initialize the
DPTR, Data
pointer is set
to
9000H

MOVX
@DPTR,A

Move the
value of A to
DPTR

JMP 0000 Stop



2’s complement of 16-bit number

Address Mnemonics Opcode Operands Comments

MOV A, #2A Move 2A to

accumulator

CPL A Compliment A

MOV R1,A Move the

value of A

to R1

MOV A #3B Mov 3B to A

CPL A Compliment A

MOV R2,A Move the

value of A

to R2

MOV A,R1 Move value
of R1 to A

ADD A, #01 ADD 01 to A

MOV DPTR, #9000H Initialize the
DPTr data
pointer is set
to
9000H

MOVX @

DPTR, A

Move the
value of A to
DPTR

MOV A,R2

ADDC A, #00H ADD 00H to A

INC DPTR Increment

DPTR

MOVX

@DPTR,A

Move the
value of A to
DPTR

LJMP 0000 Stop



Largest of N numbers

ORG 0000H ; Origin, start code at address 0000H
MOV R0, #00H ; Initialize R0 with 00H (R0 will point to data in memory)
MOV A, @R0 ; Move the value at the memory location pointed by R0 to
the accumulator (A)
MOV R2, A ; Copy the value in A (accumulator) to R2 (R2 used as a
counter)
DEC R2 ; Decrement the value in R2 (R2 = R2 - 1)

INC R0 ; Increment R0 to point to the next memory location

BACK: MOV A, @R0 ; Move the value at memory pointed by R0 into A
CJNE A, B, LOOP ; Compare A with B, if not equal, jump to LOOP
JMP NEXT ; If A equals B, jump to NEXT

LOOP: JC LOOP1 ; If the carry flag is set, jump to LOOP1
MOV B, A ; Move the value in A to B

LOOP1: INC R0 ; Increment R0 to point to the next memory location
DJNZ R2, BACK ; Decrement R2, if not zero, jump back to BACK

NEXT: MOV 60H, B ; Move the value of B into memory address 60H
END ; End of program



COUNT NUMBER OF ONE’S AND ZERO’S IN A NUMBER

ORG 0000H ; Set the origin at address 0000H

MOV R2, #00H ; Initialize R2 to store the count of '1's
MOV R3, #00H ; Initialize R3 to store the count of '0's
MOV R1, #08H ; Set R1 to 8, as we are working with an 8-bit

number
MOV R0, #06H ; Load the number 06H into R0 (this is the

number whose bits will be counted)
MOV A, R0 ; Move the value in R0 (06H) to the

accumulator (A)

BACK: RRC A ; Rotate the accumulator right through
the carry flag

JC SKIP ; If carry is set (bit was 1), jump to SKIP
INC R3 ; Increment R3 to count the '0' bit
AJMP LAST ; Jump to LAST

SKIP: INC R2 ; Increment R2 to count the '1' bit

LAST: DJNZ R1, BACK ; Decrement R1 (bit counter), if not zero, go
back to BACK

END ; End of program



SQUARE NUMBER USING LOOKUP TABLE

ORG 0000H ; Set program origin at address 0000H

MOV DPTR, #300H ; Load the starting address of the square lookup
table (300H) into DPTR
MOV A, 60H ; Move the value from memory location 60H into A
(assumed to contain the number to square)
MOVC A, @A+DPTR ; Use the value in A as an index to retrieve the
square from the lookup table (A = A + DPTR)
MOV 70H, A ; Store the result (square of the number) in memory
location 70H

ORG 300H ; Set origin at 300H for the lookup table
SQR_TABLE: ; Define the square lookup table
DB 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 ; Values are squares of numbers 0-9

END ; End of program



SWITCH STATUS

ORG 0000H ; Set program origin at address 0000H

SETB P0.0 ; Set bit P0.0
(initialize switch on Port 0, pin 0 to high state)

CLR P2.0 ; Clear bit P2.0 (turn
off an LED or other device connected to Port
2, pin 0)

AGAIN: JNB P0.0, NEXT ; Check the
status of P0.0 (switch). If P0.0 is low (not
pressed), jump to NEXT

SETB P2.0 ; If P0.0 is high
(switch pressed), set P2.0 (turn on the
LED/device)

SJMP AGAIN ; Jump back to
AGAIN to keep monitoring the switch status

NEXT: CLR P2.0 ; If P0.0 is low
(switch not pressed), clear P2.0 (turn off the
LED/device)

SJMP AGAIN ; Keep
checking the switch status in an infinite loop

END ; End of the program



TIME DELAY USING TIMER

#include <reg51.h> // Include header file for 8051 microcontroller

void DELAY(void); // Function prototype for delay

void main(void) {
while (1) { // Infinite loop

P1 = 0x55; // Send 0x55 (01010101) to Port 1 (LED pattern)
DELAY(); // Call delay function
P1 = 0xAA; // Send 0xAA (10101010) to Port 1 (LED pattern)
DELAY(); // Call delay function

}
}

void DELAY(void) {
TMOD = 0x01; // Set timer mode: Timer 0, Mode 1 (16-bit timer mode)
TH0 = 0x4B; // Load higher byte of timer with 4B (for delay)
TL0 = 0xFE; // Load lower byte of timer with FE (for delay)
TR0 = 1; // Start Timer 0

while (TF0 == 0); // Wait for Timer 0 overflow (TF0 flag set)

TR0 = 0; // Stop Timer 0
TF0 = 0; // Clear Timer 0 overflow flag

}



Arrange the number in ascending order

ORG 0000H ; Program origin at address 0000H
MOV R0, #09H ; Initialize R0 with 9 (outer loop counter)

AGAIN: MOV DPTR, #2000H ; Initialize DPTR to point to external memory
starting at 2000H

MOV R1, #09H ; Initialize R1 with 9 (inner loop counter)

BACK: MOV A, DPL ; Load lower byte of DPTR (DPL) into A
MOVX A, @DPTR ; Move the external memory byte at DPTR into A

(using MOVX for external memory)
MOV B, A ; Copy the value in A into B (temporary storage)

INC DPTR ; Increment DPTR to point to the next memory
location

MOVX A, @DPTR ; Move the next byte from external memory at DPTR
into A

CJNE A, B, NEXT ; Compare A (current value) with B (previous value),
jump to NEXT if not equal

AJMP SKIP ; If A equals B, skip to SKIP (no operation needed)

NEXT: JC SKIP ; If carry is set (indicating a negative result), jump to
SKIP

MOV DPL, R2 ; Load the lower byte of DPTR with the value in R2
(presumably modifying DPTR)

MOVX @DPTR, A ; Move the current value in A into external memory
at DPTR

INC DPTR ; Increment DPTR to point to the next memory
location

MOV A, B ; Load A with the value previously stored in B
MOVX @DPTR, A ; Store the value in A (which was originally in B) into

the new DPTR location

SKIP: DJNZ R1, BACK ; Decrement R1, if not zero, jump back to BACK
(inner loop)

DJNZ R0, AGAIN ; Decrement R0, if not zero, jump back to AGAIN
(outer loop)

END ; End of the program


